

Investigating the Relation Between Streamflow and Habitat for Rearing and Spawning Spring Chinook in the McKenzie and North Santiam Rivers, Oregon

> James White¹, Karen Bartelt¹, Gabriel Hansen², Jacob Kelley², Brandon Overstreet¹, Tobias Kock², Rose Wallick¹

> > ¹USGS Oregon Water Science Center ²USGS Western Fisheries Research Center

> > > jameswhite@usgs.gov

Willamette Fisheries Science Review April 3, 2024 Corvallis, Oregon

Background

Mainstem Willamette River studies

- Bathymetric lidar & sonar
- Hydraulic models
- Habitat modeling literature review
- Chinook habitat use assessment
- Chinook/steelhead habitat models
- Temperature models
- Movement/growth/survival models
- Smallmouth bass models

USGS

Paperdia response with the KLI. May Gope of Explores, Parland Harris Tracklag Heat in the Willamotte River System, Gregos

Scientific Investigations Report 2022-5000

11. Description of the latents

USGS

The Thermal Landscape of the Willamsette River—Patterns and Controls on Stream Temperature and Implications for New Management and Cold-Water Salmonids

Property in a supervise with the U.J. Army Garpe of Explosure, Partiand Disk int

Scientific Investigations Report 2022-000

Li bertertritelerte

overlap with juvenile Chinook salmon in the Willamette River,

Oregon

≊USGS

Hydraulic Modeling

≥USGS

2302 4

White et al., 2023

Bathymetry (m) Depth (m) Velocity (m/s) Bathymetry (m) Depth (m) 443.789 211.547 FINN ROCK NIMROD Velocity (m/s) 1.5 Km 0.38 0.75

Hydraulic modeling results at low flow (1600 ft³/2)

USGS

Figure 1. Map showing reaches (pink shading) where habitat sampling occurred during April–July 2020 and 2021 on the mainstem Willamette, Santiam, and McKenzie Rivers.

Figure 10. Estimated presence probability from the resource selection function (RSF) for juvenile Chinook (Oncorhynchus tshawytscha) salmon based on water velocity and water depth.

Chinook Fry

Chinook Parr

flip of a coin has an Hansen et al., 2023

0

perfect chance (the

≥USGS

Chinook Fry "median" threshold

Figure from White and others, 2022

No robust in-basin data for spawning habitat

• Useful historical data from ODFW/USACE

WFRC conducting literature review to develop spawning

Source	General location	Location	Species and run	Unit	Mean I	Low ran	High rar N	Vin 1	Max Unit	Mean	Low ran	High rar I	Min I	Max U	nit M	lean Lo	ow ran H	ligh rar M	1in 1	Max Notes		
Hamann et al 2014	Salmon River basin	Upper Big Creek	Spring Chinook	m	0.353	0.22	0.486	0.183	0.671 m/s	0.302	0.149	0.455	0.008	0.674 cn	n	6.3	4.7	7.9	4	9.7 Ranges are SD. Substrate measurement was 'the intermediate axis of 10 randomly chosen substrate particles'		
Hamann et al 2014	Salmon River basin	Middle Big Creek	Spring Chinook	m	0.432	0.343	0.521	0.3	0.55 m/s	0.742	0.528	0.956	0.401	1.037 cn	n	9.1	7.5	10.7	6.9	11.2 Ranges are SD. Substrate measurement was 'the intermediate axis of 10 randomly chosen substrate particles'		
Hamann et al 2014	Salmon River basin	Lower Big Creek	Spring Chinook	m	0.446	0.366	0.526	0.396	0.564 m/s	0.686	0.641	0.731	0.642	0.741 cn	n	6.5	4.5	8.5	4.3	9.1 Ranges are SD. Substrate measurement was 'the intermediate axis of 10 randomly chosen substrate particles'		
Isaak et al 2007	Salmon River basin	Middle Fork Salmo	r Spring Chinook	m	0.289	0.2139	0.3641	0.166	0.493					cn	m	3.7	2.701	4.699	1.76	6.4 Ranges are SD. Metrics based on 'habitat patches' identified by locations of redds from 1994-2005. Substrate measu		
McHugh and Budy 2004	Salmon River basin	Elk Creek	Spring Chinook	m	0.17	0.14	0.19	0.12	0.21 m/s	0.42	0.3	0.48	0.19	0.71 cn	m	4.9	4.6	5.8	3	7.7 Ranges are upper and lower quartiles from box plot. Substrate measurement is D84.		
McHugh and Budy 2004	Salmon River basin	Sulphur Creek	Spring Chinook	m	0.29	0.24	0.32	0.13	0.33 m/s	0.33	0.32	0.38	0.27	0.54 cn	m	6.3	4.1	6.8	3.8	8 Ranges are upper and lower quartiles from box plot. Substrate measurement is D84.		
Platts et al 1979	Salmon River basin	i, Idaho	Spring Chinook											cr	m		0.7	2		Substrate range represents mean particle sizes. Source has much more detail on substrate sizes not included here.		
Burner 1951	Cowlitz River basin	, Ohanapecosh River	r Spring Chinook	m	0.2286			0.0762	0.508											Info from table on page 101		
Burner 1951	Wenatchee River bi	Nason Creek	Spring Chinook	m	0.2159			0.1016	0.3556 m/s	0.6096			0.1524	1.0668						Info from table on page 101. Velocity reported as 'cubic feet a second', possibly intended to by ft/s?		
Knudsen et al 2004	Yakima River Basin	, Upper Yakima River	r Spring Chinook	m	0.5			0.32	0.78 m/s	0.8			0.4	1.35						Values interpreted from Figure 2 for in-river redds.		
Hughes and Murdoch 20	1 Chiwawa River, WA	Chiwawa River	Spring Chinook	m		0.28	0.44													Depth range includes highest/lowest upper and lower 95% confidence intervals from Fig. 5 Redd depth. Study took d		
Cepello et al 2009	Feather River, CA	Feather River	Spring Chinook	m	0.6706	0.4877	0.8534	0.061	1.1887 m/s	0.762	0.381	0.8992	0.061	1.524						Based on habitat suitablity index developed by this study. High and low ranges determined by 'preferred range' in s		
Moir and Pasternack 200	Lower Yuba River, C	Lower Yuba River	Spring Chinook	m		0.39	0.79		m/s		0.45	1.32		cn	m				3.22	7.4 Depth and velocity ranges include lowest and highest mean depth for habitat sections that contained redds from Ta		
Dudley et al 2022	Unspecified		Spring Chinook						m/s	0.5		1.2								Figure 6 and supplemental material S16 have information on Spring Chinook from other studies. This study has Win		
Bjorn and Rieser 1991	Unspecified		Spring Chinook	m				0.24	m/s				0.3	0.91 cn	m				1.3	10.2 Both Reiser and Bjornn publications have same data sources and values. Substrate measurement is general range		
Reiser and Bjornn 1979	Unspecified		Spring Chinook	m				0.24	m/s				0.3	0.91 cr	m				1.3	10.2 Both Reiser and Bjornn publications have same data sources and values. Substrate measurement is general range s		
Hampton 1988	Trinity River basin,	CA	Spring and Fall Chir	r m	0.4572	0.1524	0.8534	0.0305	1.8288 m/s	0.9144	0.3048	1.7374	0.1524	1.7678						Based on habitat preference criteria developed by this study. Low and high ranges determined by 0.5 or higher prefe		
Raleigh et al 1986	Unspecified		Chinook unspecifie	m		0.2	7		m/s		0.27	0.9	0.23	1.2 cn	m	4.2			0.3	15 Velocity ranges are based on Habitat Suitablity index. Depth is implied to be mainly limited by lower end, and are j		
Geist and Dauble 1998	Columbia River	Upper	Fall Chinook	m				0.6	4.5											Values from Table 2		
Geist and Dauble 1998	Columbia River	Near Wells Dam	Fall Chinook	m		5.3	7.2	1.6	9.6 m/s	0.9			0.4	1.2						Values from Table 2		
Geist and Dauble 1998	Columbia River	Hanford Reach	Fall Chinook	m	1.4			1.2	2.6 m/s				0.4	2						Values from Table 2		
Geist and Dauble 1998	Columbia River	Hanford Reach	Fall Chinook	m		1.8	7.6	0.3	9					cn	m		10	20	5	30 Values from Table 2		
Geist and Dauble 1998	Columbia River	Not specified	Fall Chinook	m				0.2	2 m/s				0.8	1.1 cn	m				2.5	15 Values from Table 2		
Geist and Dauble 1998	Columbia River trib	Snake River	Fall Chinook	m				1	2 m/s				0.5	1.2 cn	m				2.5	15 Values from Table 2		
Geist and Dauble 1998	Columbia River trib	Snake River	Fall Chinook	m	2.8			0.2	6.5 m/s	1.1			0.4	2.1						Values from Table 2		
Geist and Dauble 1998	Columbia River trib	Snake River	Fall Chinook	m				4.6	7.9 m/s				0.3	0.4						Values from Table 2		
Geist and Dauble 1998	Columbia River trib	Kalama River	Fall Chinook	m	0.4				m/s	0.6										Values from Table 2		
Geist and Dauble 1998	Columbia River trib	Toutle River	Fall Chinook	m	0.3				m/s	0.4										Values from Table 2		
Geist and Dauble 1998	Other river systems	Campbell River, BC	Fall Chinook	m	0.6			0.3	0.8 m/s	0.6			0.4	0.8						Values from Table 2		
Geist and Dauble 1998	Other river systems	Nechako River, BC	Fall Chinook						m/s				0.15	1						Values from Table 2		
Geist and Dauble 1998	Other river systems	Oregon streams	Fall Chinook	m	0.4				m/s	0.5										Values from Table 2		
Geist and Dauble 1998	Other river systems	Unspecified	Fall Chinook											cn	m				1.3	10.2 Values from Table 2		
Groves and Chandler 19	9 Snake River, ID	Snake River	Fall Chinook	m	2	1	4.5	0.5	6.5 m/s	1.25	1	1.5	0.5	2.25 cm	m		2.6	7.5	0.6	15 Values interpreted from Figures 4, 5, and 7		
Riebe et al 2014	Shasta River, CA	Shasta River	Fall Chinook											cr	m	7	4.5	10		D50 for Chinook interpreted from Figure 5		
·																						
		1		1	_																	

No robust in-basin data for spawning habitat

Useful historical data from ODFW/USACE

WFRC conducting literature review to develop spawning

USGS

No robust in-basin data for spawning habitat

Useful historical data from ODFW/USACE

WFRC conducting literature review to develop spawning

Linking grainsize to roughness

Linking grainsize to roughness

North Santiam River

Quick note on spawning data....

- Location of GPS point not always taken directly over redd
- Not using survey-grade GPS
- Potential for geomorphic change between redd survey and lidar/pebble counts

Metric	Wide range	Narrow range
Depth	0.1-Inf m	0.2-0.8 m
Velocity	0.05-1.8 m/s	0.3-1.3 m/s
Substrate	1.3-11.2 cm	1.7-5.9 cm
the second se		

Sediment Suitability Model

Full Spawning Suitability Model

Spawning habitat availability during typical September flows

USGS

Preliminary data, do not cite

Dewatering tool

- Preliminary, proof of concept web app
- Shows inundated extent and spawning habitat at a range of typical spawning flows
- User can select two different flows and view the change in wetted area and spawning habitat between flows

Interactive	Map Data								
Total I	nundation and	Spawning Habitat							
Show 10	✓ antrias				Search:				
	F	low (cfs)	т	otal inundated area (square km) 🕴	Total h	Total habitat area (square km)			
1		1000		2.4					
2		1500		2.6					
3		2000		2.7					
4		2500		2.8					
5		3000		2.9					
Showing 1 to	5 of 5 entries					Previous 1			
Differe	ence in Inunda	tion and Spawning	Habitat Between Flows						
Show 10	✓ entries			Search:					
Initia	I flow (cfs) Altern	ate flow (cfs) Decrease in	inundation (square km) Percent	decrease in inundation Decrease in	spawning habitat (square km) Percent decrea	se in spawning habit			
1	3000	2500	0.061	2.1	0.00031				
2	3000	2000	0.13	4.7	0.0036				
		1000	0.25	9.8	0.014				
3	3000	1500	0.20	0.0	0.014				

Summary

Juvenile habitat

- Fry and parr models show fairly different habitat use between life stages
 - Parr slightly more sensitive to changes in streamflow
- Juvenile habitat in McKenzie and N. Santiam Rivers generally less sensitive to changes in streamflow compared to the mainstem Willamette River

Spawning

- Method to simulate sediment and spawning habitat appears to capture observed conditions reasonably well
- Suitable sediment is most limiting factor to available spawning habitat
- Spawning habitat generally not sensitive to changes in streamflow
 - No "optimal" streamflow, but interannual changes in streamflow likely still important to redd dewatering
 - Tool will provide real time information for flow managers

Questions McKenzie bathymetry:

White, J.S., Overstreet, B.T., and Bartelt, K.M., 2023, Digital elevation model and single beam sonar data from the McKenzie River, Oregon, 2021: U.S. Geological Survey data release, https://doi.org/10.5066/P9QS5V0C.

Willamette models/bathymetry:

White, J.S., 2022, Two-dimensional HEC-RAS models and topo-bathymetric datasets for the Willamette River, Oregon: U.S. Geological Survey data release, https://doi.org/10.5066/P9NB0KUT.

White, J.S., Gordon, G.W., and Overstreet, B.T., 2019, Single-beam Echosounder Bathymetry of the Willamette River, Oregon 2015-2018: U.S. Geological Survey data release, https://doi.org/10.5066/P92TTY4R .

Reports

Habitat Use:

Hansen, G.S., Perry, R.W., Kock, T.J., White, J.S., Haner, P.V., Plumb, J.M., and Wallick, J.R., 2023, Assessment of habitat use by juvenile Chinook salmon (Oncorhynchus tshawytscha) in the Willamette River Basin, 2020–21: U.S. Geological Survey Open-File Report 2023–1001, 20 p., https://doi.org/10.3133/ofr20231001.

Habitat Models:

White, J.S., Peterson, J.T., Stratton Garvin, L.E., Kock, T.J., and Wallick, J.R., 2022, Assessment of habitat availability for juvenile Chinook salmon (Oncorhynchus tshawytscha) and steelhead (O. mykiss) the Willamette River, Oregon: U.S. Geological Survey Scientific Investigations Report 2022–5034, 44 p., <u>https://doi.org/10.3133/sir20225034</u>.

Hydraulic Models:

White, J.S., and Wallick, J.R., 2022, Development of continuous bathymetry and two-dimensional hydraulic models for the Willamette River, Oregon: U.S. Geological Survey Scientific Investigations Report 2022–5025, 67 p., https://doi.org/10.3133/sir20225025.

Habitat review:

Kock, T.J., Perry, R.W., Hansen, G.S., White, J., Stratton Garvin, L., and Wallick, J.R., 2021, Synthesis of habitat availability and carrying capacity research to support water management decisions and enhance conditions for Pacific salmon in the Willamette River, Oregon: U.S. Geological Survey Open-File Report 2021–1114, 24 p., https://doi.org/10.3133/ofr20211114.

Smallmouth models:

White, J. S., Kock, T. J., Penaluna, B. E., Gregory, S., Williams, J., & Wildman, R. (2023). Expansion of smallmouth bass distribution and habitat overlap with juvenile Chinook salmon in the Willamette River, Oregon. *River Research and Applications*, 1–13. <u>https://doi.org/10.1002/rra.4228</u>

Growth, Movement, Survival Models:

Peterson, J. T., Pease, J. E., Whitman, L., White, J., Stratton-Garvin, L., Rounds, S., & Wallick, R. (2022). Integrated tools for identifying optimal flow regimes and evaluating alternative minimum flows for recovering at-risk salmonids in a highly managed system. River Research and Applications, 38(2), 293–308. <u>https://doi.org/10.1002/rra.3903</u>

jameswhite@usgs.gov

Preliminary data, do not cite

0.6 Km